_____ C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name: Operations Research

Subject Code: 48	SC06OPR1	Branch: B.Sc. (Mathematics)			
Semester: 6 Date: 26/09/2022		Time: 11:00 To 02:00	Marks: 70		

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1	a)	Attempt the following questions. Define: Basic solution	(14) 01
	b)	Define: Surplus variable	01
	c)	True/False: Every Linear programming problem can be solve graphically.	01
	d)	Define: Saddle point	01
	e)	PERT stands for	01
	f)	MODI stands for	01
	g)	True/False: Every Transportation problem is Linear programming problem.	01
	h)	Define: Pure Strategy	01
	i)	When total supply is not equal total demand in a transportation problemthen it is called transportation problem.(a) Balance(b) Unbalance(c) Degenerate(d) None	01
	j)	For maximization problem in Big-M method, objective function coefficient for an artificial variable is (a) +M (b) $-M$ (c) 0 (d) None	01
	k)	Which of the following method is used to find initial solution to the transportation problem.(a) NWCR (b) LCM (c)Vogel's Approximation (d) All of these	01
	l)	Games which involves more than two player are called(a) Conflicting games(b) Negotiable games(c) N-person games(d) All of these	01
	m)	When all the elements of replacement ratio column are equal, thissituation is known as(a) Tie(b) Degeneracy(c) Break(d) None of these	01

n)	In LPP, deg	generacy occurs in	stages.	
	(a) one	(b) Two	(c) Three	(d) Four

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

- (a) A farmer has a 100 acre farm. He can sell all tomatoes, lettuce or radishes and can get a price of Rs.1.00 per kg for tomatoes, Rs. 0.75 a heap for lettuce and Rs.2.00 per kg for radishes. The average yield per acre is 2,000 kg of tomatoes, 3,000 heaps of lettuce and 1,000 kg of radishes. Fertilizers are available at 0.50 per kg and the amount required per acre is 100 kg each for tomatoes and lettuce and 50 kg for radishes. Labour required for sowing, cultivating and harvesting per acre is 5 man days for tomatoes and radishes and 6 man days for lettuce. A total of 400 man days of labour are available at Rs. 20 per man day. Formulate this problem as a linear programming model to maximize the farmer's total profit. Formulate this problem as an LP model.
- (b) Solve by using graphical method:

Max Z = 5x + 8y Subject to, $3x + 2y \le 36$ $x + 2y \le 20$ $3x + 4y \le 42$ $and x, y \ge 0$

(c) Write General Mathematical model of Linear programming problem.

Q-3 Attempt all questions

- (a) Company produces 2 types of hats A and B. Every hat A requires twice
 (a) as much labour time as the second hat B. If the company produces only hat B then it can produce a total of 500 hats per day. The market limits daily sales of hat A and B to 150 and 250 respectively. The profits on hat A and B are Rs. 8 and Rs. 5 respectively. Formulate this problem as LPP model and then solve graphically.
- (b) Solve by using Simplex method.

 $\begin{array}{l} Maxximize \ Z = 3x_1 + 2x_2 + 5x_3\\ Subject \ to,\\ x_1 + 2x_2 + x_3 \leq 430\\ 3x_1 + 2x_3 \leq 260\\ x_1 + 4x_2 \leq 420\\ and \ x_1, x_2, x_3 \geq 0 \end{array}$

Page 2 of 4

01

(**14**) 07

05

(**14**) 07

02

07

	8	Plax	or B	
				ת
		<i>B</i> ₁	<i>B</i> ₂	<i>B</i> ₃
Player Δ	A_1	1	3	1
I layer A	A_2	0	-4	-3
	A_3	1	5	-1
Vrite general	mathematical	form of Transp	ortation probl	em.
Attempt all q	mathematical :	form of Transp	portation probl	em.
Write general Attempt all q Solve given L	mathematical : uestions inear programi	form of Transp ning problem.	portation probl	em.
Write general Attempt all q Solve given L	mathematical : uestions inear programi Maximi	form of Transp ming problem. $ze Z = 5x_1 - 1$	portation probl $4x_2 + 3x_3$	em.
Write general Attempt all q Solve given L	mathematical i uestions inear programi Maximi	form of Transp ming problem. $ze Z = 5x_1 - Subject to$,	bortation probl $4x_2 + 3x_3$	em.
Write general Attempt all q Solve given L	inear programi <i>Maximi</i>	form of Transp ning problem. $ze Z = 5x_1 - Subject to,$ $_1 + x_2 - 6x_3 = 1$	bortation probl $4x_2 + 3x_3$ $= 20$	em.
Write general Attempt all q Solve given L	mathematical i mestions inear programi <i>Maximi</i> 2x 6x ₁	form of Transp ming problem. $ze Z = 5x_1 - Subject to,$ $_1 + x_2 - 6x_3 = + 5x_2 + 10x_3$	bortation probl $4x_2 + 3x_3$ = 20 ≤ 76	em.
Write general Attempt all q Solve given L	mathematical interprograms inear programs Maximi $2x_1$ $6x_1$ $8x_1$	form of Transp ming problem. $ze Z = 5x_1 - Subject to,$ $1 + x_2 - 6x_3 = + 5x_2 + 10x_3$ $- 3x_2 + 6x_3$	bortation probl $4x_2 + 3x_3$ $= 20$ ≤ 76 ≤ 50	em.

(b) Find initial basic solution to the given transportation problem by using 07 VAM.

Destination									
Origins		D_1	D_2	D_3	D_4	Supply			
	O_1	11	13	17	14	250			
	02	16	18	14	10	300			
	03	21	24	13	10	400			
	Demand	200	225	275	250				

Q-6 Attempt all questions

Q-4

Q-5

Q-7

- (a) Write steps of simplex method.
- (b) Find optimal solution to the given Transportation problem.

	Destination									
		D_1	D_2	D_3	D_4	Supply				
Origins	O_1	6	1	9	3	70				
	02	11	5	2	8	55				
	03	10	12	4	7	70				
	Demand	85	35	50	45					

Attempt all questions

(a) Solve given LPP by using Big-M method

$$Maximize \ Z = 2x_1 + 3x_2$$

Subject to,

$$x_1 + x_2 \ge 2$$

 $x_1 + 2x_2 \le 8$
and $x_1, x_2 \ge 0$

(**b**) Write steps of MODI method.

Page **3** of **4**

07

(**14**) 07 07

(14)

07

Q-8 Attempt all questions

- (a) Write basic Difference between CPM and PERT.
- (b) For what value of λ , is the game with the following matrix strictly determinable?

	Player B							
		B_1	B_2	B_3				
Player A	A_1	λ	6	2				
	A_2	-1	λ	-7				
	A_3	-2	4	λ				

(c) Construct a network for each of the projects whose activities and their precedence relationships are given below.

Activity	А	В	С	D	E	F	G	Η	Ι
Predecessor	-	Α	А	-	D	B,C,E	F	D	G,H

(**14**) 05

05

04