\qquad

C. U. SHAH UNIVERSITY

Winter Examination-2022

Subject Name: Operations Research

Subject Code: 4SC06OPR1
Semester: 6

Date: 26/09/2022

Branch: B.Sc. (Mathematics)

Time: 11:00 To 02:00 Marks: 70

Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions

a) Define: Basic solution
b) Define: Surplus variable
c) True/False: Every Linear programming problem can be solvegraphically.
d) Define: Saddle point01
e) PERT stands for___ 01
f) MODI stands for
g) True/False: Every Transportation problem is Linear programming 01 problem.
h) Define: Pure Strategy 01
i) When total supply is not equal total demand in a transportation problem 01 then it is called \qquad transportation problem.
(a) Balance
(b) Unbalance
(c) Degenerate
(d) None
j) For maximization problem in Big-M method, objective function coefficient for an artificial variable is \qquad -.
(a) +M
(b) -M
(c) 0
(d) None
k) Which of the following method is used to find initial solution to the transportation problem.
(a) NWCR
(b) LCM
(c)Vogel's Approximation
(d) All of these
I) Games which involves more than two player are called \qquad .
(a) Conflicting games
(b) Negotiable games
(c) N -person games
(d) All of these
m) When all the elements of replacement ratio column are equal, this situation is known as \qquad _.
(a) Tie
(b) Degeneracy
(c) Break
(d) None of these
n) In LPP, degeneracy occurs in \qquad stages.
(a) one
(b) Two
(c) Three
(d) Four

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(a) A farmer has a 100 acre farm. He can sell all tomatoes, lettuce or radishes and can get a price of Rs. 1.00 per kg for tomatoes, Rs. 0.75 a heap for lettuce and Rs. 2.00 per kg for radishes. The average yield per acre is $2,000 \mathrm{~kg}$ of tomatoes, 3,000 heaps of lettuce and $1,000 \mathrm{~kg}$ of radishes. Fertilizers are available at 0.50 per kg and the amount required per acre is 100 kg each for tomatoes and lettuce and 50 kg for radishes. Labour required for sowing, cultivating and harvesting per acre is 5 man - days for tomatoes and radishes and 6 man - days for lettuce. A total of 400 man - days of labour are available at Rs. 20 per man - day. Formulate this problem as a linear programming model to maximize the farmer's total profit. Formulate this problem as an LP model.
(b) Solve by using graphical method:

$$
\begin{gathered}
\text { Max } Z=5 x+8 y \\
\text { Subject to, } \\
3 x+2 y \leq 36 \\
x+2 y \leq 20 \\
3 x+4 y \leq 42 \\
\text { and } x, y \geq 0
\end{gathered}
$$

(c) Write General Mathematical model of Linear programming problem.

Q-3 Attempt all questions

(a) Company produces 2 types of hats A and B. Every hat A requires twice as much labour time as the second hat B. If the company produces only hat B then it can produce a total of 500 hats per day. The market limits daily sales of hat A and B to 150 and 250 respectively. The profits on hat A and B are Rs. 8 and Rs. 5 respectively. Formulate this problem as LPP model and then solve graphically.
(b) Solve by using Simplex method.

Maxximize $Z=3 x_{1}+2 x_{2}+5 x_{3}$
Subject to,
$x_{1}+2 x_{2}+x_{3} \leq 430$
$3 x_{1}+2 x_{3} \leq 260$
$x_{1}+4 x_{2} \leq 420$
and $x_{1}, x_{2}, x_{3} \geq 0$

Attempt all questions
(a) Write down limitation of linear programming problem.
(b) Find the value of game for the pay-off matrix given below.

	Player B			
Player A	B_{1}	B_{2}	B_{3}	
	A_{1}	1	3	1
	A_{2}	0	-4	-3
	A_{3}	1	5	-1

(c) Write Short note on Degeneracy in Simplex algorithm.
(d) Write general mathematical form of Transportation problem.
(a) Solve given Linear programming problem.

$$
\begin{gather*}
\text { Maximize } Z=5 x_{1}-4 x_{2}+3 x_{3} \tag{14}\\
\text { Subject to, } \\
2 x_{1}+x_{2}-6 x_{3}=20 \\
6 x_{1}+5 x_{2}+10 x_{3} \leq 76 \\
8 x_{1}-3 x_{2}+6 x_{3} \leq 50 \\
\text { and } x_{1}, x_{2}, x_{3} \geq 0
\end{gather*}
$$

(b) Find initial basic solution to the given transportation problem by using

VAM.

Destination							
Origins		D_{1}	D_{2}	D_{3}	D_{4}	Supply	
	O_{1}	11	13	17	14	250	
	O_{2}	16	18	14	10	300	
	O_{3}	21	24	13	10	400	
	Demand	200	225	275	250		

Q-6

Q-7

Attempt all questions
(a) Write steps of simplex method.
(b) Find optimal solution to the given Transportation problem.

Origins	Destination						
		D_{1}	D_{2}	D_{3}	D_{4}	Supply	
	O_{1}	6	1	9	3	70	
	O_{2}	11	5	2	8	55	
	O_{3}	10	12	4	7	70	
	Demand	85	35	50	45		

Attempt all questions

(a) Solve given LPP by using Big-M method

$$
\begin{gathered}
\text { Maximize } Z=2 x_{1}+3 x_{2} \\
\text { Subject to, } \\
x_{1}+x_{2} \geq 2 \\
x_{1}+2 x_{2} \leq 8 \\
\text { and } x_{1}, x_{2} \geq 0
\end{gathered}
$$

(b) Write steps of MODI method.

Attempt all questions

(a) Write basic Difference between CPM and PERT.
(b) For what value of λ, is the game with the following matrix strictly determinable?

Player A Player B				
	A_{1}	B_{1}	B_{2}	B_{3}
	A_{2}	-1	6	2
	A_{3}	-2	4	-7

(c) Construct a network for each of the projects whose activities and their

04 precedence relationships are given below.

Activity	A	B	C	D	E	F	G	H	I
Predecessor	-	A	A	-	D	B,C,E	F	D	G,H

